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Abstract

The nonlinear-coupled vibrations of an elastic structure and liquid sloshing in a cylindrical container are
investigated. The behavior of the liquid surface is governed by a kind of the Mathieu equation because the
structure is subjected to a vertical and sinusoidal excitation. Modal equations for liquid sloshing governing
the coupled motions are derived when the natural frequency of the structure is equal to twice the natural
frequency of an anti-symmetric mode of sloshing. The theoretical resonance curves are determined by using
van der Pol’s method. The influences of a liquid level and a detuning parameter on the theoretical resonance
curves are investigated when only the excitation frequency is selected as a control parameter. The
inclination of a frequency response curve depends on the liquid level. Furthermore, a small deviation of the
tuning condition may cause amplitude- and phase-modulated motions and chaotic vibrations. This
deviation also leads to separate the occurrence region of the coupled vibration into two regions of the
excitation frequency. The theoretical resonance curves are quantitatively in agreement with the
experimental data. Lastly, the amplitude- and phase-modulated motions and chaotic vibrations were
observed in experiments.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

c damping coefficient of the structure
Fl vertical fluid force
F0 amplitude of excitation
g acceleration of gravity
h depth of the liquid
k spring constant of the structure
M summation of masses of the structure

and the liquid ð¼ m þ mlÞ

m mass of the structure
ml mass of the liquid
P fluid pressure
p0 natural frequency of the structure (or

the main system)
pmn natural frequency of the (m; n) sloshing

mode (m; n: integers)

R tank radius
ðr; y; zÞ circular cylindrical coordinate system

(see Fig. 1)
t time
ðx; y; zÞ rectangular coordinate system (see

Fig. 1)
z0 displacement of the structure
Z displacement of the liquid surface
n1 ¼ m=M

n2 ¼ mlR=ðpMhÞ

r fluid density
f velocity potential
o excitation frequency
zmn damping ratios of (m; n) sloshing mode
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1. Introduction

Vibrations of an elastic structure with liquid containers are very important problems
from the viewpoint of structure performance and disaster prevention. Associated problems
often appear in industry such as elevated water tanks and liquefied natural gas (LNG) tanks.
When the motion of a liquid surface—referred to as sloshing—occurs in containers, the
nonlinearity of the liquid inertia force essentially appears. Therefore, this nonlinearity must be
taken into account to accurately analyze the dynamic behavior of the liquid sloshing. Liquid
sloshing dynamics including free and forced free-surface motions, sloshing interaction with elastic
structures, numerical techniques, and sloshing under low gravitational field are reviewed
elsewhere [1].

Many papers examined the nonlinear behavior of liquid sloshing in circular cylindrical
containers that are excited harmonically. However, most of these deal with the case of a
horizontal excitation [2–5], while few papers have examined a vertical excitation [6–8]. Interaction
problems of an elastic structure and a liquid sloshing—which are the main subjects of this paper—
have primarily focused on tuned liquid dampers. Regarding the damping effects that circular
cylindrical liquid tanks have on the vibration of the structure under horizontal excitation, Senda
and Nakagawa [9] were early to report on linear analysis. Since then, experimental [10,11] and
nonlinear analyses [12,13] have also been reported. On the other hand, few papers have dealt with
interaction problems where a structure is subjected to vertical excitation for a rectangular tank
[14] and a circular cylindrical tank [15–18]. The authors of this paper examined the case where an
axisymmetric sloshing mode was excited in a circular cylindrical tank [18] and improving the
accuracy of the former analysis [15] by considering multiple sloshing modes. However, as
two different modes of an identical natural frequency are degenerated, the behavior of an
anti-symmetrical sloshing mode in a cylindrical tank becomes more complicated than that of the
case of an axisymmetric mode.
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This paper presents the theoretical and experimental resonance curves when an elastic structure
carrying a circular cylindrical liquid tank is subjected to a vertical sinusoidal excitation. The only
nonlinearity that exists here is due to the large amplitude of liquid sloshing. In the theoretical
analysis, the modal equations—which govern the dynamic behavior of coupled vibrations
between the structure and the liquid sloshing of an anti-symmetric mode—have been derived by
using van der Pol’s method [19] at the 2:1 internal resonance ratio. The influences of the liquid
levels and the deviation of the internal resonance ratio on the theoretical resonance curves are
investigated when only the excitation frequency is selected as a control parameter. The
experiments have demonstrated that the theoretical resonance curves are quantitatively in
agreement with the experimental ones.
2. Theoretical analysis

2.1. Equations of motion

Ibrahim and his co-researchers [15–17] have adopted an elastic structure with a cylindrical
liquid container where the structure can move in both horizontal and vertical directions. In this
study, however, practical structures, such as towers and buildings, are modeled as a single-degree-
of-freedom (sdof) system provisioning only vertical movement, which makes the system and the
essence of coupled vibrations between the structure and the liquid sloshing much easier to
understand.

A model for theoretical analysis is shown in Fig. 1. We consider an sdof system as a
structure, which consists of the mass m; the spring with spring constant k; and the dashpot with
damping coefficient c: This structure is subjected to a vertical sinusoidal excitation. A circular
cylindrical partially filled tank with a radius R and depth h is supported by the structure.
Let us consider a moving rectangular coordinate system ðx; y; zÞ and a circular cylindrical
coordinate system ðr; y; zÞ; which are fixed on the tank. The xy-plane coincides with
the undisturbed surface of the liquid. The vertical displacement of the mass m; measured
from its equilibrium position, is designated as z0: The elevation of the liquid surface at the
position of ðr; yÞ is Z: Damping effects due to the fluid viscosity essentially influence the behavior
of the liquid sloshing. Therefore, the Navier–Stokes equation should be undertaken in order
to precisely analyze the viscous fluid. However, it is rather difficult to solve this equation.
Here the following procedure is adopted. Namely, the linear viscous damping terms are added to
the modal equations in a phenomenological way after all the transformations have been
completed by using potential flow theory. Here, the velocity potential f of the liquid particles,
moving relative to the tank, is introduced. The Laplace equation (i.e., the continuity equation) is
given in terms of f:

Dfðr; y; z; tÞ �
q2f
qr2

þ
1

r

qf
qr

þ
1

r2

q2f

qy2
þ
q2f
qz2

¼ 0 (1)
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Fig. 1. The model for theoretical analysis.
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and the generalized Bernoulli equation (i.e., the pressure equation) is given in
Refs. [15,20,21] as

qf
qt

þ
1

2

qf
qr

� �2

þ
1

r2

qf
qy

� �2

þ
qf
qz

� �2
( )

þ gz þ
P

r
¼ �€z0z, (2)

where Pðr; y; z; tÞ is the fluid pressure, r is the fluid density, g is the acceleration of gravity and the
symbol ‘‘�’’ represents the derivative with respect to the time t:

When the structure is vertically subjected to the sinusoidal excitation F0 cosot; the equation of
motion for the structure is

m€z0 þ c_z0 þ kz0 ¼ Fl þ F0 cosot þ mlg, (3)

where Fl is the fluid force acting in the z direction on the structure through the tank bottom, and
ml is the mass of liquid. The third term on the right-hand side of Eq. (3) is produced because of the
definition of the equilibrium position of z0: The fluid force Fl is given by

Fl ¼ �

Z 2p

0

Z R

0

rPðr; y; z; tÞjz¼�h dr dy, (4)

where Pðr; y; z; tÞ is given by Eq. (2).



ARTICLE IN PRESS

T. Ikeda, S. Murakami / Journal of Sound and Vibration 285 (2005) 517–546 521
Now the following dimensionless quantities are defined as

z00 ¼ z0=R; Z0 ¼ Z=R; r0 ¼ r=R; z0 ¼ z=R; h0 ¼ h=R; n1 ¼ m=M; n2 ¼ ml=ðpMh0
Þ,

f0
¼ f=ðR2p11Þ; k0

¼ k=ðMp2
11Þ; c0 ¼ c=ðMp11Þ; F 0 ¼ F=ðMRp2

11Þ,

F 0
l ¼ Fl=ðMRp2

11Þ; P0 ¼ P=ðrR2p2
11Þ; t0 ¼ p11t; xmn ¼ lmnR,

½M ¼ m þ ml ; p11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gl11 tanhðl11hÞ

p
�. ð5Þ

Note that the quantities in the parenthesis [ ] in Eq. (5) have dimensions. The quantity lmn denotes
the nth positive root in order of magnitude and satisfies the characteristic equation

d

dr
fJmðlrÞg ¼ 0 ðat r ¼ RÞ, (6)

where Jm indicates the mth order Bessel function of the first kind. The subscript ðm; nÞ of lmn

corresponds to the natural mode of liquid sloshing, where m represents the number of diametral
nodal lines and n represents the order to a nodal concentric circle. For example, p11; obtained
from l11 in Eq. (5), means the natural frequency of ð1; 1Þ mode of sloshing. Using Eq. (5) for
Eqs. (1)–(4) to be written in a dimensionless form yields:

frr þ
1

r
fr þ

1

r2
fyy þ fzz ¼ 0, (7)

ft þ
1

2
f2

r þ
1

r2
f2
y þ f2

z

� �
þ

1

c11

z þ P ¼ �€z0z, (8)

n1 €z0 þ c_z0 þ kz0 ¼ Fl þ F0 cosot þ n2ph=c11, (9)

Fl ¼ �n2

Z 2p

0

Z 1

0

rPðr; y; z; tÞjz¼�h dr dy, (10)

where c11 ¼ x11 tanhðx11hÞ and the symbols ‘‘ 0 ’’ designating dimensionless quantities are all
omitted. The subscripts r; y; z and t; as seen in fr; frr; fyy; etc., represent the partial differentiation
with respect to the corresponding coordinates.

Because the fluid velocities vanish at the side walls and bottom of the tank, the boundary
conditions for f are given by

fr ¼ 0 ðat r ¼ 1Þ; fz ¼ 0 ðat z ¼ �hÞ. (11)

Next, because the vertical velocity of the fluid particle on the liquid surface is equal to the
velocity of the liquid surface in the vertical direction, one can obtain the kinematic boundary
condition [15]

fz ¼ Zt þ frZr þ
1

r2
fyZy ðat z ¼ ZÞ. (12)

Moreover, because P ¼ 0 at the free surface z ¼ Z; the boundary condition for Eq. (8) is given by

ft þ
1

2
f2

r þ
1

r2
f2
y þ f2

z

� �
þ

1

c11

z ¼ �€z0z ðat z ¼ ZÞ. (13)
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2.2. Unstable regions in the corresponding linear system

In this section, the boundaries of the unstable regions will be determined by using the
corresponding linear system. In terms of the eigenfunctions obtained from a free vibration
analysis, the solutions of f and Z are assumed as follows:

fðr; y; z; tÞ ¼ acðtÞ þ
X1
m¼0

X1
n¼1

famnðtÞ cos myþ bmnðtÞ sin mygJmðxmnrÞ coshfxmnðz þ hÞg= coshðxmnhÞ,

(14a)

Zðr; y; tÞ ¼
X1
m¼0

X1
n¼1

fcmnðtÞ cos myþ dmnðtÞ sin mygJmðxmnrÞ, (14b)

where ac; amn; bmn; cmn and dmn are the unknown functions of time. Among those, cmn and dmn

represent the amplitudes of the (m; n) sloshing mode. The mode shapes of the natural vibrations of
sloshing with m ¼ 0 are axisymmetric about the z-axis and other mode shapes are all anti-
symmetric. The term ac in Eq. (14a) is important upon determining the fluid force in the nonlinear
analysis, discussed in Section 2.3. However, the constant term is not necessary in Eq. (14b)
because the undisturbed liquid surface coincides with the x-axis (i.e., z ¼ 0).

Figs. 2(a)–(c) show the shapes of natural vibrations for ð0; 1Þ; ð1; 1Þ and ð2; 1Þ modes. When
ma0; they have an identical shape for given values of m and n though the modes corresponding to
cmn cos my JmðxmnrÞ and dmn sin my JmðxmnrÞ in Eq. (14b) have diametral nodal lines whose
locations are different from each other by angular position p=ð2mÞ: Therefore, bmn and dmn are
assumed to be zero; it will then be sufficient to consider only amplitudes amn and cmn in the
following analysis in this section. By substituting Eq. (14) into Eq. (9) and into Eqs. (12) and (13)
without nonlinear terms, and then putting z ¼ 0 and eliminating amn; it yields the following two
kinds of equations:

ðn1 þ n2phÞ€z0 þ c_z0 þ kz0 � 2pn2

X1
n¼1

J1ðx0nÞ

c0nx0n coshðx0nhÞ
€c0n ¼ F0 cosot, (15a)

€cmn þ 2zmnomn _cmn þ o2
mnð1 þ c11 €z0Þcmn ¼ 0, (15b)
0 00

(a) (b) (c)

Fig. 2. Shapes of sloshing modes: (a) (0,1) mode; (b) (1,1) mode; (c) (2,1) mode.
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where o2
mn ¼ cmn=c11 and cmn ¼ xmn tanhðxmnhÞ: omn represents the natural frequency of sloshing

mode ðm; nÞ in a dimensionless form. In order to consider the damping effects of sloshing, a linear
viscous damping term 2zmnomn _cmn is added to Eq. (15b); zmn is the damping ratio for the sloshing
mode ðm; nÞ: The amplitude of cmn vanishes in the stable region. However, even in the unstable
regions, cmn is infinitesimal in the vicinity of initial states of time. This can also be applied to the
term €c0n in Eq. (15a). Therefore, assuming the solution of forced oscillation for Eq. (15a) is

z0 ¼ Z cosðot þ bÞ (16)

yields the amplitude Z and the phase angle b as follows:

Z ¼
F0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fk � ðn1 þ n2phÞo2g2 þ ðcoÞ2
q , (17a)

b ¼ �tan�1 co
k � ðn1 þ n2phÞo2


 �
. (17b)

Next, substituting Eq. (16) into Eq. (15b) and adopting the time transformation

t ¼ ot þ b (18)

yields

d2cmn

dt2
þ mmn

dcmn

dt
þ ðdmn � �mn cos tÞcmn ¼ 0, (19)

where mmn ¼ 2zmnomn=o; dmn ¼ cmn=ðc11o
2) and �mn ¼ cmnZ: Because Eq. (19) includes a

parametrically excited term, it falls into the Mathieu equation. Therefore, some unstable
vibrations may occur depending on the values of parameters. Periodic oscillations appear on the
boundaries between the stable and unstable regions. The oscillations of frequencies fð2i �

1Þ=2go ði ¼ 1; 2; 3; . . . ; Þ are designated by using the symbol ½fð2i � 1Þ=2go�: This kind of
oscillation can occur on the boundary in the parameter space, which is approximately given by

9 � 4dmn 2�mn 0 �6mmn

2�mn 1 � 4dmn þ 2�mn �2mmn 0

0 2mmn 1 � 4dmn � 2�mn 2�mn

6mmn 0 2�mn 9 � 4dmn

����������

����������
¼ 0. (20)

In addition, periodic oscillations of frequency io ði ¼ 1; 2; 3; . . . ; Þ may appear. However, this kind
of vibration is not treated here because their unstable regions are relatively narrower compared
with the width of the unstable regions depicted in Eq. (20).

2.3. Modal equations

In this section, the ordinary differential equations (referred to as modal equations) including the
nonlinear terms for the amplitudes of dominant components are derived. Here, the natural
frequency of the structure system [expressed by Eq. (9)] is defined as p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðn1 þ pn2hÞ

p
: The

response of the nonlinear-coupled system in the vicinity of p0 ffi o is investigated in the presence
of the condition of internal resonance p0 ffi 2p11 between the natural frequencies p0 and p11: Here,
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p11 is defined in Eq. (5) and represents the natural frequency of ð1; 1Þ mode of liquid sloshing. Eqs.
(14a) and (14b) are also used as the solutions of f and Z; respectively. Upon introducing the small
parameter �; the orders of the amplitudes and the damping coefficients are assumed as follows:

a11; b11; c11; d11; z0; c; zmn � Oð�1=3Þ,

ac; a01; c01; a21; b21; c21; d21 � Oð�2=3Þ,

a31; b31; c31; d31 � Oð�3=3Þ. ð21Þ

The orders of the other amplitudes, which are not shown in Eq. (21), are assumed to be smaller
than Oð�Þ: The procedure to assume the orders of unknown variables in Eq. (21) is based on the
following idea. When the relationship p0 ffi 2p11 ffi o is satisfied, it is found from the
experimental data that the displacement z0 of the structure and the amplitudes c11 and d11 of
sloshing mod (1; 1) occur predominantly. These amplitudes, through the nonlinear terms, produce
smaller ones, such as ac; a01; c01; a21; b21; c21 and d21; and moreover, the resultant amplitudes
produce much smaller ones. Because this nonlinear analysis is considered within the accuracy of
the order Oð�Þ; it follows in a phenomenological way that one should assume the most
predominant amplitude to be Oð�1=3Þ; and consecutively produced amplitudes to be Oð�2=3Þ: In
addition, it is possible for this system to have other internal resonances depending on parameter
values, as shown in Appendix C; for example, p0 ffi 2p11 ffi p02 ffi p22: However, a one-to-one
internal resonance is not significant unless the magnitude of excitation amplitude is large [22].
Therefore, in the present case, as the excitation amplitude is not so large as to cause other internal
resonances, they are not considered in this paper.

Expanding Eqs. (12) and (13) at Z ¼ 0; considering Z to be small, and then substituting Eq. (14)
into them, one equates the constant terms and the coefficients of J0ðx01rÞ; Jmðxm1rÞ cos my and
Jmðxm1rÞ sin my ðm ¼ 1; 2Þ on the both sides of these equations by using the assumption in Eq.
(21). In addition, substituting the pressure P from Eq. (8) into Eq. (10) and carrying out the
integration, one obtains the modal equations as follows:

Q1 €z0 þ c_z0 þ kz0 þ Q2 _ac þ G1ða11; b11Þ ¼ F0 cosot, (22a)

_a11 þ 1=c11 þ €z0


 �
c11 þ G2ð _ai1; _bj1; ai1; bj1; ci1; dj1Þ ¼ 0, (22b)

_b11 þ 1=c11 þ €z0


 �
d11 þ G3ð _ai1; _bj1; ai1; bj1; ci1; dj1Þ ¼ 0, (22c)

_c11 � c11a11 þ G4ðai1; bj1; ci1; dj1Þ ¼ 0, (22d)

_d11 � c11b11 þ G5ðai1; bj1; ci1; dj1Þ ¼ 0, (22e)

_ac þ G6ð _a11; _b11; _z0; a11; b11; c11; d11Þ ¼ 0, (22f)

_a01 þ 1=c11 þ €z0


 �
c01 þ G7ð _a11; _b11; a11; b11; c11; d11Þ ¼ 0, (22g)

_c01 � c01a01 þ G8ða11; b11; c11; d11Þ ¼ 0, (22h)

_a21 þ 1=c11 þ €z0


 �
c21 þ G9ð _a11; _b11; a11; b11; c11; d11Þ ¼ 0, (22i)
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_b21 þ 1=c11 þ €z0


 �
d21 þ G10ð _a11; _b11; a11; b11; c11; d11Þ ¼ 0, (22j)

_c21 � c21a21 þ G11ða11; b11; c11; d11Þ ¼ 0, (22k)

_d21 � c21b21 þ G12ða11; b11; c11; d11Þ ¼ 0, (22l)

where Q1 ¼ n1 þ n2ph; and Q2 ¼ �n2p: The term Gk ðk ¼ 1; 2; . . . ; 12Þ represents the nonlinear
terms which consist of variables amn ðm ¼ 0; 1; 2; n ¼ 1Þ; bmn ðm ¼ 1; 2; n ¼ 1Þ; etc., shown in
their parentheses (see Appendix A). Eliminating ac from Eqs. (22a) and (22f), one obtains

Q1 €z0 þ c_z0 þ kz0 þ G13ð _a11; _b11; a11; b11; c11; d11Þ ¼ F0 cosot, (23)

where G13 is given in Appendix A.
Using Eq. (21) to eliminate amn and bmn from Eqs. (22b–e, g–l) and (23), and retaining the terms

up to Oð�Þ; one obtains

Q1 €z0 þ c_z0 þ kz0 þ H1ð€z0; _c11; _d11; c11; d11Þ ¼ F0 cosot, (24a)

€c11 þ 2z11 _c11 þ ð1 þ c11 €z0Þc11 þ H2ð_ci1; _dj1; ci1; dj1Þ ¼ 0, (24b)

€d11 þ 2z11
_d11 þ ð1 þ c11 €z0Þd11 þ H3ð_ci1; _dj1; ci1; dj1Þ ¼ 0, (24c)

€c01 þ 2z01o01 _c01 þ o2
01ð1 þ c11 €z0Þc01 þ H4ð€z0; _c11; _d11; c11; d11Þ ¼ 0, (24d)

€c21 þ 2z21o21 _c21 þ o2
21ð1 þ c11 €z0Þc21 þ H5ð€z0; _c11; _d11; c11; d11Þ ¼ 0, (24e)

€d21 þ 2z21o21
_d21 þ o2

21ð1 þ c11 €z0Þd21 þ H6ð€z0; _c11; _d11; c11; d11Þ ¼ 0, (24f)

where Hi ði ¼ 1; 2; . . . ; 6Þ represent the nonlinear terms, which are given in Appendix B. It should
be noted that viscous damping terms are added in Eqs. (24) in order to consider the effect of
energy dissipation on sloshing—as in Eq. (15b). Eqs. (24) enable one to simulate the coupled
system numerically.

2.4. Resonance curves near the tuning frequency

FFT analysis generally demonstrates the frequency components that are predominantly
involved in the time histories. Mode (1; 1) has two different degenerated modes, whose diametral
nodal lines intersect at a right angle. Therefore, their amplitudes c11 and d11 can be excited
simultaneously near o ffi p0 ffi 2p11: In general, however, it is found from the results of numerical
simulation that the diametral nodal line of sloshing mode (1; 1) is stationary with time, and that
the position of its nodal line depends on the initial condition. Therefore, in a phenomenological
way, the resonance curves, near the tuning frequency o ffi p0 ffi 2p11; are discussed where the
diametral nodal line of mode (1; 1) coincides with the y-axis. This assumption, coinciding with the
y-axis, does not make any difference of response, and does not allow any losing of the general
results from analysis. Accordingly, in this section, dmn is assumed to be zero in Eqs. (24). Based on
the result of the FFT analysis, the solutions of a forced oscillation near the tuning frequency for
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Eqs. (23) and (24) can be assumed as follows:

z0 ¼ u1 cosot � v1 sinot,

c11 ¼ u2 cos 1
2ot � v2 sin 1

2ot þ e1 cos 3
2ot � f 1 sin 3

2ot,

c01 ¼ e2 cosot � f 2 sinot þ r0,

c21 ¼ e3 cosot � f 3 sinot þ r2, ð25Þ

where the amplitudes ui; vi; ej and f j (i ¼ 1; 2; j ¼ 1; 2; 3), and the constant terms r0 and r2 are
assumed to vary slowly with time, according to the method of van der Pol [19]. Based on Eq. (21),
the amplitudes in Eq. (25) and their derivatives with respect to time are also assumed to have the
orders [12,18]

ui; vi � Oð�1=3Þ; ej; f j; r0; r2 � Oð�2=3Þ,

_ui; _vi � Oð�3=3Þ; _ej; _f j; _r0; _r2 � Oð�4=3Þ,

€ui; €vi � Oð�5=3Þ; €ej; €f j; €r0; €r2 � Oð�2Þ. ð26Þ

Substituting Eq. (25) into Eq. (24), and then equating the same frequency terms of o; (1
2
Þo and

ð32Þo and the constant term on both sides within an accuracy of Oð�Þ; respectively, one obtains

_u1 ¼ K1ðui; vi; ej; f jÞ; _v1 ¼ K2ðui; vi; ej; f jÞ,

_u2 ¼ K3ðui; vi; ej; f j; rkÞ; _v2 ¼ K4ðui; vi; ej; f j; rkÞ,

e1 ¼ K5ðui; viÞ; f 1 ¼ K6ðui; viÞ; e2 ¼ K7ðui; viÞ; f 2 ¼ K8ðui; viÞ,

e3 ¼ K9ðui; viÞ; f 3 ¼ K10ðui; viÞ; r0 ¼ K11ðui; viÞ; r2 ¼ K12ðui; viÞ. ð27Þ

Functions Ki ði ¼ 1; 2; . . . ; 12Þ in Eq. (27) represent the nonlinear terms which consist of the
variables in their parentheses (where, i ¼ 1; 2; j ¼ 1; 2; 3 and k ¼ 0; 2). Their concrete forms are
omitted here. Eq. (27) can be reduced to a set of ordinary differential equations of the first order
for the variables ui and vi ði ¼ 1; 2Þ: The steady-state solutions of Eq. (27) can be obtained
numerically and their stability analysis can be performed in the same manner as Ref. [12].

A comparison has been made in the nonlinear-coupled partially filled liquid system, considered
an sdof system, by replacing the liquid in the container to a same mass of solid body. The dynamic
behavior of this system is governed by Eq. (15a) with c0n ¼ 0; and the amplitude Z of its
displacement z0 is given by Eq. (17a). In Eq. (17a), n1 þ n2phð� Q1Þ represents the dimensionless
quantity corresponding to the sum m þ ml ; hence, the sum of the structure mass and the liquid
mass. Actually, Q1 ¼ 1 in the theoretical analysis.
3. Numerical results

In the numerical calculations, the values of parameters are given such that the natural
frequency p0 of the structure system is equal to twice the natural frequency p11 of the sloshing
mode ð1; 1Þ; hence, the tuning condition (or the internal resonance) p0 ffi 2p11 is satisfied.

Fig. 3 shows the unstable region, which is indicated by the shaded portion on the ðo;F0) plane
for the values of parameters: n1 ¼ 0:87; n2 ¼ 0:034; k ¼ 4:0; c ¼ 0:03; h ¼ 1:2 and zmn ¼ 0:008 at
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the oscillation [1
2
o] of the ð1; 1Þ sloshing mode of c11 or d11: These values are matched with the

experimental apparatus A to be mentioned in Section 4. In this case, the dimensionless natural
frequencies are p0 ¼ 2 and p11 ¼ 1: The boundary of this region can be calculated by Eq. (20) with
m ¼ 1 and n ¼ 1: It is found that the unstable region is comparatively large even if F0 is small
because the parametric excitation term €z0 in Eq. (15b) or the coefficient �mn in Eq. (19) becomes
comparatively large near the resonance point of o ffi p0: For example, the unstable vibrations of
the frequency 1

2
o occur at the interval B2C2 when F0 ¼ 0:0021 in Fig. 3.
3.1. Influence due to the change of liquid level

In this section, the theoretical resonance curves for three different liquid levels of the tank in the
nonlinear-coupled system are demonstrated. First of all, Fig. 4 shows the steady-state time
histories obtained by numerically integrating Eq. (24) with d11 ¼ 0 and d21 ¼ 0 through the
Adams method. The initial values for z0 and cmn are 0.001. The values of the parameters, F0 ¼

0:0021; ðr; yÞ ¼ ð1; 0Þ and o ¼ 2:03; are in addition to those used in Fig. 3. Because d11 and d21 are
always zero in Fig. 4, it is known that the diametral nodal line is located on the y-axis and a
harmonic oscillation of the frequency o in z0 and a subharmonic oscillation of the frequency 1

2o in
c11 appear predominantly.

Fig. 5 shows the result of the FFT analysis of the time histories shown in Fig. 4. For example, it
can be seen clearly that the component of o is contained in z0; while the components of 1

2
o and 3

2
o

in c11: These results are grounds for assumption (25) for determining the resonance curves.
Resonance curves can be calculated by solving Eq. (27) numerically. Figs. 6(a) and (b) show the

resonance curves for the displacement z0 of the structure (whose amplitude is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1

2 þ v1
2

p
)

and for the amplitude c11 of the (1,1) sloshing mode (whose amplitude is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

2 þ v2
2

p
),

respectively. The values of the parameters are the same as in Fig. 4. The solid line represents a
stable steady-state solution, while the broken line indicates an unstable solution. The symbol ‘‘�’’
represents the amplitude of the frequency o component in z0 [shown in Fig. 6(a)] and the

amplitude of the frequency 1
2
o component in c11 [shown in Fig. 6(b)], which are obtained by an

FFT analysis of steady-state time histories. As mentioned before, these steady-state time histories
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are calculated by directly integrating Eq. (24). It is observed that the theoretical resonance curves
are in good agreement with the results of the numerical one. The branch A1B1C1D1 in z0 is
absolutely the same compared to the results calculated from Eq. (17a), but the branch B1C1

appears unstable. The corresponding branch A2B2C2D2 shows zero amplitude in c11: In the
corresponding linear system, the interval B2C2 results in an unstable region, as shown in Fig. 3,
with divergent vibrations in this interval. In the nonlinear system, however, because the branch
EF appears in Fig. 6 as a stable one, the divergent vibrations do not occur in this interval B2C2:
Instead, a harmonic oscillation of the frequency o and a subharmonic oscillation occur on the
branch E1F1 and on the branch E2F2; respectively. When the liquid level is comparatively high as
in Fig. 6, jump phenomena in amplitude appear at the points B1 (or B2) and E1 (or E2).

Figs. 7 and 8 show the theoretical resonance curves when the liquid levels are lower than
in Fig. 6. The values of the parameters in Fig. 7, which differ from those in Fig. 6, are n1 ¼ 0:94;
n2 ¼ 0:035; and h ¼ 0:55; while they are n1 ¼ 0:96; n2 ¼ 0:032; and h ¼ 0:4 in Fig. 8. Based on
Fig. 6, the amplitudes of the points E1 and F1 in Fig. 7(a) are similar, and the amplitude
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of the points E1 is larger than that of the point F1 in Fig. 8(a). In Fig. 8, the branch BE changes to
a stable solution where the point B in the Figs. 6 and 7 show the change from a subcritical
pitchfork bifurcation to a supercritical one. As the liquid level decreases, the peak of the
resonance curve for z0 moves from the right side [shown by the point F1 in Fig. 6(a)] to the left
side [shown by the point E1 in Fig. 8(a)] in the Figs. 6–8. In addition, the inclination of the
resonance curve for c11 tends to bend toward left-hand side in Fig. 6 or toward right-hand
side in Fig. 8.
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3.2. Influence due to the deviation of tuning

Next, the influence due to the deviation of the tuning condition, in particular the relationship of
the internal resonance on resonance curves, is discussed. The detuning parameter is defined as
s11 � p0 � 2p11: Fig. 9 shows the theoretical resonance curves when only the value of the spring
constant k is changed from k ¼ 4:0 in Fig. 6 to k ¼ 3:78: This change leads to s11 ¼ �0:0540: The
stable branch EF in Fig. 6 changes to an unstable interval GH on the branch EF in Fig. 9.
According to the numerical simulation from Eq. (24), amplitude- and phase-modulated motions
occur at the interval GH. The vertical thin lines in Fig. 9 represent the magnitude of the

modulated amplitude, which are obtained from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2
0 þ ð_z0=oÞ

2
q

in Fig. 9(a) andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
11 þ f_c11=ð0:5oÞg2

q
in Fig. 9(b) The location of the appearance of this amplitude- and phase-

modulated motion obtained from the simulation agrees well with the theoretical analysis in this
interval GH. This kind of amplitude- and phase-modulated motion also appears in other
autoparametric systems such as the structures with a pendulum [23–25], the ships coupled with the
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pitch and roll motions [26], and an L-shaped beam with concentrated masses [27]. As mentioned
in Section 2.4, Eq. (27) can be reduced to a set of ordinary differential equations of the first order
for the variables ui and vi (i ¼ 1; 2). In this paper, numerically calculating the steady state
solutions (or fixed points) from those equations, we determine their stabilities from the
eigenvalues of its Jacobian matrix. For example, in Fig. 9, as the value of o increases along the
branch EF, a complex conjugate pair of eigenvalues transversely crosses the imaginary axis and
other complex eigenvalues remain in the left-half plane near point G [28]. Therefore, this implies
that point G is a Hopf bifurcation point. Point H is the same as point G. In addition, the
simplification analyses enable one to differentiate between subcritical or supercritical type of Hopf
bifurcation [29]. Here, instead of that simplification analysis, we investigate the type of these Hopf
bifurcation points by applying AUTO [30] to Eq. (27). The dotted lines in Figs. 9(a) and (b)

represent the maximum and minimum values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fu1ðtÞg

2 þ fv1ðtÞg
2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fu2ðtÞg

2 þ fv2ðtÞg
2

p
;

which are the amplitudes of the orbits in the phase planes (u1; v1) and (u2; v2), when the stable
periodic solutions appear at the interval GH. These dotted lines are broken off because the
unusable periodic solution occurs. It is seen that those amplitudes change continuously starting
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from points Gi and Hi (i ¼ 1; 2) without any jumps while the excitation frequency changes.
Consequently, these points are found to be supercritical.

Figs. 10(a)–(c) show the steady-state time histories obtained from the numerical simulation at
o ¼ 1:920; 1:925 and 1.929 within the interval GH in Fig. 9, respectively. The initial values of dmn

and _dmn are given the same values as those of cmn and _cmn; respectively. It can be seen that the
amplitude- and phase-modulated vibrations occur. The amplitude varies once, twice or irregularly
in the envelope of this time history during each cycle (if it has a cycle) in Figs. 10(a)–(c),
respectively. The occurrence of amplitude- and phase-modulation in Fig. 10 is not due to the
liquid swirling motion because the time histories of c11 and d11 are always in phase and this
implies that the nodal line of the ð1; 1Þ sloshing mode is at rest. In order to investigate these
amplitude- and phase-modulated vibrations more in detail, the Poincaré map technique is used.
Figs. 11(a)–(c) show the Poincaré maps, plotted on the (z0; _z0) plane and the (c11; _c11) plane,
corresponding to Figs. 10(a)–(c) correspondingly. Poincaré maps exhibit a single-loop on the
(z0; _z0) plane and two single-loops on the (c11; _c11) plane in Fig. 11(a). They then change to two
double-loops on the (c11; _c11) plane in Fig. 11(b), and finally they encounter chaotic attractors in
Fig. 11(c).

To investigate the sequence up to chaotic vibrations more in detail, the Lyapunov exponents are
calculated by applying the method of Wolf et al. [31] through Eq. (24). Fig. 12 shows the
Lyapunov exponents, including the largest (a full line), the second largest (a broken line) and the
third largest ones (a dotted line), versus the excitation frequency o in the case of parameters as
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Fig. 11. Poincaré maps dotted on the (z0; _z0) and (c11; _c11) planes corresponding to the time histories in Fig. 10: (a)

o ¼ 1:920; (b) o ¼ 1:925; and (c) o ¼ 1:929:
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Fig. 9. The results of the largest Lyapunov exponents for the points Pa; Pb and Pc correspond to
the time histories, which are shown in Figs. 11(a), (b) and (c), respectively. The points G and H
represent the Hopf bifurcation points. The period-doubling bifurcation point is indicated by the
point P1: These locations are not given by the numerical results of Lyapunov exponents, but
obtained by numerical simulation of Eq. (24). However, there is a strong relationship between
numerical results of Eq. (24) and Lyapunov exponents. As the excitation frequency o increases,
the system experiences a Hopf bifurcation at the point G; it then encounters a period-doubling
bifurcation at the point P1: This system exhibits a chaotic behavior at the point Pc because the
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largest Lyapunov exponent is positive. In the sequence from the point Pc to the point H,
depending on the value of the largest Lyapunov exponent as shown in Fig. 12, the system
experiences chaotic behaviors discontinuously and returns to simply amplitude-and phase-
modulated motions.

Fig. 13 shows the theoretical resonance curves when the spring constant changes from k ¼ 3:78
in Fig. 9 to k ¼ 3:67: This change leads to s11 ¼ �0:0825: The unstable zero-amplitude solutions
of c11 appear in the interval I2K2 in addition to the interval B2C2, and then the nonlinear-coupled
vibrations occur in the two separated regions of o: The amplitude- and phase-modulated motions
appear also on the branch BC. The dotted lines obtained by AUTO correspond to the stable
periodic solutions and they are continuous near points Gi and Hi: Therefore, these points are
found to be supercritical. The dotted lines are broken off because unstable periodic solutions
occur. However, when s11 becomes positive by changing the value of k in Fig. 9 larger, the
unstable interval GH does not appear on the branch EF.
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Fig. 14 shows the theoretical resonance curves where only the spring constant in Fig. 8 (for
h ¼ 0:4) changes to k ¼ 4:19 and s11 ¼ þ0:0467: It can be seen that the unstable interval GH
appears and that amplitude- and phase-modulated vibrations occur in a part of the interval GH.
The dotted lines are obtained by AUTO. Therefore, these Hopf bifurcation points are found to be
supercritical. In this case, the dotted lines run continuously from point G to point H. This implies
that the stable periodic solutions occur in the interval GH. In contrast to the case of high liquid
levels, such an unstable interval as GH appears in the case of low liquid levels only when the
detuning parameter s11 exceeds some positive value. To be exact, it is found that this kind of
amplitude- and phase-modulated vibration does not occur unless the absolute value of s11 exceeds
a certain threshold value, regardless of the liquid level.
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In order to determine the appearing region of bifurcation including a pitchfork bifurcation, a
saddle-node bifurcation and a Hopf bifurcation, the bifurcation sets are calculated by using
AUTO. Fig. 15 shows the loci of bifurcation points (referred to as a bifurcation set), plotted on
the (o; k) control parameter space when the liquid level is high (for h ¼ 1:2). Namely, this figure
includes the information about bifurcation sets in Fig. 6 (for k ¼ 4:0), Fig. 9 (for k ¼ 3:78) and
Fig. 13 (for k ¼ 3:67). Therefore, it is found that the Hopf bifurcation points G and H appear
when the value of k is smaller than 3.859, hence s11o� 0:0338 (� sS1). sS1 represents a threshold
value at which a Hopf bifurcation starts to appear.

The results above mentioned can be summarized as follows: In the case of high liquid levels,
two Hopf bifurcation points appear on the branch of resonance curves when the detuning
parameter is smaller than the threshold sS1 (o0)—that is s11psS1o0: Then, amplitude- and
phase-modulated vibrations occur between these bifurcation points. On the other hand, in the
case of low liquid levels, amplitude- and phase-modulated vibrations occur when s11 is larger than
sS2 (40)—that is s11XsS240:
4. Experimental apparatus

Fig. 16 shows the sketch of the experimental apparatus. A T-shaped structure, which was
attached to the end of two 500mm length arms with ball bearings in their joints to constrain the
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Fig. 16. The setup of the experimental apparatus.
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horizontal motion, was supported by a spring at the bottom (see the front view). Therefore, this
structure was able to move only in the approximately vertical direction. The structure was excited
sinusoidally and stepwise at each excitation frequency by an electromagnetic exciter (Brüel &
Kjær 4808) through a thin aluminum plate. The head of the exciter was controlled by a vibration
exciter controller (Brüel & Kjær 1050) in order to keep the amplitude of the head constant
regardless of any excitation frequency. A circular cylindrical tank was attached to the structure. A
water solution with white watercolors of 0.28% concentration was used as a test liquid so that the
light of a laser sensor could be reflected on the liquid surface. A laser sensor S1 measured the
displacement z0 of the structure. In the experiments, the direction of the diametric nodal line of
the ð1; 1Þ sloshing mode did not necessarily coincide with the y-axis or the x-axis. Because of this
reason, the elevation Z of the water surface was calculated by the square root of the sum of
amplitudes, which were measured by the laser sensors S2 and S3 just over the x- and y-axis,
respectively (see the top view).

The dimensions of the experimental apparatuses A–E are demonstrated in Table 1. In each
apparatus, the relationship, p0 ffi 2p11; was satisfied by adjusting the mass m and the spring
constant k of the structure. Here, p0 is given by 1=ð2pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðm þ mlÞ

p
Hz, and p11 by

1=ð2pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gl11 tanhðl11hÞ

p
Hz. The value of the damping coefficient c of the structure was identified

by curve-fitting with the theoretical resonance curve given by Eq. (17a) and the values of the
damping ratios zmn of the water sloshing were identified by curve-fitting with the theoretical
resonance curve for the nonlinear-coupled system.

The values of lower natural frequencies for sloshing modes are presented for h ¼ 60 mm in
Appendix C. Although some internal resonances, for example 2p11 ffi p02 ffi p22; exist
besides a one-to-two internal resonance p0 ffi 2p11; they cannot appear unless the magnitude of
excitation amplitude is considerably large. This was verified by the experimental results in the next
section.
Table 1

Dimensions of apparatuses A, B, C, D and E

Apparatus A B C D E

Structure mass: m (kg) 7.326 6.265 8.399 7.726 8.326

Spring constant: k (N/m) 9476 4612 4632 9400 9386

Damping coefficient: c (Ns/m) 3.06 1.603 2.06 3.08 3.33

Tank radius: R (mm) 60 85 85 60 60

Water depth: h (mm) 72 45 32 72 72

Water mass: ml (kg) 0.815 1.019 0.726 0.815 0.815

Damping ratios: zmn 0.0085 0.0053 0.0053 0.0085 0.0085

Force: F0 (N) 0.435 0.165 0.164 0.418 0.488

Position of sensor S2: x (mm) 50 65 65 50 50

Position of sensor S3: y (mm) 50 65 65 50 50

Natural frequency: p0 (Hz) 5.430 4.005 3.586 5.280 5.100

Natural frequency: p11 (Hz) 2.727 2.009 1.796 2.727 2.727

Detuning: s11 (� p0 � 2p11) (Hz) �0.024 �0.013 �0.006 �0.174 �0.354
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5. Experimental results

Figs. 17(a) and (b) show a comparison between the experimental and theoretical resonance
curves for the structure and the water surface in apparatus A (where the liquid level is high:
h=R ¼ 1:2), respectively. In this case, s11ð� p0 � 2p11Þ ¼ �0:024Hz, hence, s11=p11 ¼ �0:0088 in
a dimensionless form. Therefore, the relationship p0 ¼ 2p11 nearly holds. The symbol � and the
symbol � represent the maximum amplitude of an experimental time history of z0 in the coupled
system and the system where the water is replaced by the same mass of the solid body,
respectively. Horizontal or oblique arrows represent the direction of changing the excitation
frequency. Vertical arrows shown in the figures represent the appearance of jump phenomena in
the amplitudes. In these figures a jump phenomenon occurs at the points B0

1 and B0
2 with the

gradually increasing of the excitation frequency. As the excitation frequency was gradually
decreased stepwise, amplitudes jumped down from the points E0

1 and E0
2: Because the damping due

to wetting of the side walls is very sensitive, as mentioned in Ref. [32], the liquid sloshing may
reach inside the unstable region and it possibly occur on branch P in Fig. 17(b). The theoretical
resonance curves, plotted in Fig. 17, represent the same definitions as discussed in the theoretical
analysis. It was observed that the theoretical resonance curves were analogous with the
experimental data.

Figs. 18 and 19 show the resonance curves obtained in apparatuses B and C, respectively. The
water depth is h=R ¼ 0:529 (with h ¼ 45mm and R ¼ 85mm) in apparatus B, while h=R ¼ 0:376
(with h ¼ 32mm and R ¼ 85 mm) in apparatus C. Both of the theoretical resonance curves are
consistent with the experimental data. Regarding the experimental resonance curves for the water
surface, the inclination of the resonance curve changed from the left-hand side to the right-hand
side as the water level is decreased—which is also observed in the theoretical result.

Fig. 20 shows the resonance curves for apparatus D, where only the mass m of the structure is
increased from the case for apparatus A to examine a deviation of the tuning condition. In this
apparatus, s11 ¼ �0:174Hz (hence, s11=p11 ¼ �0:0638). The unstable interval GH appears in the
corresponding theoretical resonance curves. In the experiment, amplitude- and phase-modulated
motions (designated as APM [Amplitude- and Phase-Modulated motion], and plotted in the
symbol S) occurred at nearly the same interval as the theoretical one. Figs. 21(a) and (b) show
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the steady-state time histories of amplitude- and phase-modulated motions at f ¼ 5:170 and
5.211 Hz, obtained in Fig. 20, respectively. Time histories z0; Z2 and Z3 were measured by the
sensors S1; S2 and S3; correspondingly. It is found that the amplitudes of their envelopes change
with a moderate regularity in Fig. 21(a) and irregularly in Fig. 21(b). Fig. 21(b) exhibits a chaotic
vibration. These results are quite similar to those of the numerical simulation as in Figs. 10(a) and
(c). The occurrence of amplitude and phase modulation in Fig. 21 was not due to the liquid
swirling motion because the time histories of Z2 and Z3 were always in phase, as discussed in
Section 3.2.

Fig. 22 shows the resonance curves for apparatus E, where the detuning is larger than that for
apparatus D. In this apparatus, s11 ¼ �0:354Hz (hence, s11=p11 ¼ �0:130), and thus the
deviation of the tuning condition is comparatively large. Amplitude- and phase-modulated
motions occur in the interval G0H0: This interval nearly coincides with the theoretical interval GH.
In addition, it is found that the nonlinear-coupled vibrations occur in two separated regions of the
excitation frequency f :
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6. Conclusions

Nonlinear-coupled vibrations of an elastic structure subjected to the vertical sinusoidal
excitation with a circular cylindrical liquid container have been investigated. The results can be
summarized as follows:

(1) Harmonic oscillations and 1
2
-order subharmonic oscillations occur in the structure and on

the liquid surface, respectively, if the relationship between the natural frequencies of the structure
and the anti-symmetric sloshing mode is 2:1.

(2) The inclination of the resonance curve for the liquid surface changes from a left-hand side to
a right-hand side as the liquid level decreases.

(3) The influence of the detuning parameter defined by s11 � p0 � 2p11 is as follows: The
amplitude- and phase-modulated motion appears for s11psS1o0 when the liquid level is high and
for s11XsS240 when the liquid level is low.

(4) Amplitude- and phase-modulated motions exhibit both the regular and irregular changes of
the envelope as the excitation frequency changes. The latter change shows the chaotic vibration.

(5) When detuning is comparatively large, the nonlinear-coupled vibrations occur separately in
two intervals of the excitation frequency.

(6) In the experiments, it is confirmed that the theoretical resonance curves are quantitatively in
agreement with the experimental data. Amplitude- and phase-modulated motions including a
chaotic behavior are observed, and the location of their appearance coincides well with the
theoretical results.
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Appendix A. Nonlinear terms in Eqs. (22) and (23)

The nonlinear terms Gi ði ¼ 1; 2; . . . ; 13Þ in Eqs. (22) and (23) are expressed by

G1 ¼ Q3ða
2
11 þ b2

11Þ,

G2 ¼ Q4 _a01c11 þ Q5 _a11c01 þ Q6 _a11c21 þ Q7 _a21c11 þ Q8
_b11d21 þ Q9

_b21d11

þ Q10ð3 _a11c2
11 þ _a11d2

11 þ 2 _b11c11d11Þ þ Q11a01a11 þ Q12ða11a21 þ b11b21Þ

þ Q13a2
11c11 þ Q14b2

11c11 þ Q15a11b11d11,

G3 ¼ Q16 _a01d11 þ Q17
_b11c01 þ Q18 _a11d21 þ Q19 _a21d11 þ Q20

_b11c21 þ Q21
_b21c11

þ Q22ð2 _a11c11d11 þ
_b11c2

11 þ 3 _b11d2
11Þ þ Q23a01b11 þ Q24ða11b21 � a21b11Þ

þ Q25a11b11c11 þ Q26a2
11d11 þ Q27b2

11d11,



Þ,
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G4 ¼ Q28a01c11 þ Q29a11c01 þ Q30ða11c21 þ b11d21Þ þ Q31ða21c11 þ b21d11Þ

þ Q32a11c2
11 þ Q33b11c11d11 þ Q34a11d2

11,

G5 ¼ Q35a01d11 þ Q36b11c01 þ Q37ða11d21 � b11c21Þ þ Q38ða21d11 � b21c11Þ

þ Q39b11c2
11 þ Q40a11c11d11 þ Q41b11d2

11,

G6 ¼ Q42ð _a11c11 þ
_b11d11Þ þ Q43ða

2
11 þ b2

11Þ; G7 ¼ Q44ð _a11c11 þ
_b11d11Þ þ Q45ða

2
11 þ b2

11

G8 ¼ Q46ða11c11 þ b11d11Þ; G9 ¼ Q47ð _a11c11 �
_b11d11Þ þ Q48ða

2
11 � b2

11Þ,

G10 ¼ Q47ð _a11d11 þ
_b11c11Þ þ Q48a11b11; G11 ¼ Q49ða11c11 � b11d11Þ,

G12 ¼ Q49ða11d11 þ b11c11Þ,

G13 ¼ Q50ð _a11c11 þ
_b11d11Þ þ Q51ða

2
11 þ b2

11Þ, ðA:1Þ

where the coefficients Qi (i ¼ 1; 2; . . . ; 51) are given by

Q1 ¼ n1 þ pn2h; Q2 ¼ �pn2; Q3 ¼ �
pn2a

2 cosh2
ðx11hÞ

; Q4 ¼ c01K120
1 ,

Q5 ¼ c11K120
1 ; Q6 ¼

1
2
c11K021

1 ; Q7 ¼
1
2
c21K021

1 ; Q8 ¼ Q6; Q9 ¼ Q7,

Q10 ¼
1
8
x2

11K040
1 ; Q11 ¼ g101

1 þ c01c11K120
1 ; Q12 ¼

1
2
ðg112

1 þ 2k021
1 þ c11c21K021

1 Þ,

Q13 ¼
1
4
c11ð3G

1111
1 þ k040

1 þ 3x2
11K040

1 Þ; Q14 ¼
1
4
c11ðG

1111
1 þ 3k040

1 þ x2
11K040

1 Þ,

Q15 ¼
1
2
c11ðG

1111
1 � k040

1 þ x2
11K040

1 Þ; Q16 ¼ Q4; Q17 ¼ Q5; Q18 ¼ Q6; Q19 ¼ �Q7,

Q20 ¼ �Q8; Q21 ¼ Q9; Q22 ¼ Q10; Q23 ¼ Q11; Q24 ¼ Q12; Q25 ¼ Q15,

Q26 ¼ Q14; Q27 ¼ Q13; Q28 ¼ g101
1 � x2

01K120
1 ; Q29 ¼ g101

1 � x2
11K120

1 ,

Q30 ¼
1
2
ðg112

1 þ 2k021
1 � x2

11K021
1 Þ; Q31 ¼

1
2
ðg112

1 þ 2k021
1 � x2

21K021
1 Þ,

Q32 ¼
1
8
c11ð6G

1111
1 þ 2k040

1 � 3x2
11K040

1 Þ; Q33 ¼
1
4
c11ð2G

1111
1 þ 2k040

1 � x2
11K040

1 Þ,

Q34 ¼
1
8
c11ð2G

1111
1 � 2k040

1 � x2
11K040

1 Þ; Q35 ¼ Q28; Q36 ¼ Q29; Q37 ¼ Q30,

Q38 ¼ �Q31; Q39 ¼ Q34; Q40 ¼ Q33; Q41 ¼ Q32; Q42 ¼ c11G11,

Q43 ¼
1
2
ðaþ g11 þ c2

11G11Þ,

Q44 ¼
1
2
c11K120

0 ; Q45 ¼
1
4
ðg011

0 þ k120
0 þ c2

11K120
0 Þ,

Q46 ¼
1
2
ðg011

0 þ k120
0 � x2

11K120
0 Þ,

Q47 ¼
1
2
c11K021

2 ; Q48 ¼
1
4
ðg211

2 � k021
2 þ c2

11K021
2 Þ,

Q49 ¼
1
2
ðg211

2 � k021
2 � x2

11K021
2 Þ,

Q50 ¼ �Q2Q42; Q51 ¼ Q3 � Q2Q43. ðA:2Þ

The symbols in Eq. (A.2) are as follows:

Gm1 ¼

Z 1

0

rJ2
mðxm1rÞdr; gm1 ¼

Z 1

0

1

r
J2

mðxm1rÞdr,
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Kijk
m ¼

Z 1

0

rJi
0ðx01rÞ J

j
1ðx11rÞ Jk

2ðx21rÞdr=Gm1,

a ¼

Z 1

0

r
dJ1ðx11rÞ

dr

� �2

dr ¼ 1
4
x2

11

Z 1

0

rfJ0ðx11rÞ � J2ðx11rÞgdr,

kijk
m ¼

Z 1

0

1

r
Ji

0ðx01rÞJ
j
1ðx11rÞJk

2ðx21rÞdr=Gm1,

Gijkl
m ¼

Z 1

0

rJiðxi1rÞ Jjðxj1rÞ
d

dr
½Jkðxk1rÞ�

d

dr
½Jlðxl1rÞ�dr=Gm1,

gijk
m ¼

Z 1

0

rJiðxi1rÞ
d

dr
½Jjðxj1rÞ�

d

dr
½Jkðxk1rÞ�dr=Gm1,

cmn ¼ xmn tanhðxmnhÞ. ðA:3Þ
Appendix B. Nonlinear terms in Eq. (24)

The nonlinear terms Hi (i ¼ 1; 2; . . . ; 6) in Eq. (24) are given by

H1 ¼ S1ð1 þ c11 €z0Þðc
2
11 þ d2

11Þ þ S2ð_c
2
11 þ

_d
2

11Þ,

H2 ¼ S3 _c01 _c11 þ S4ð_c11 _c21 þ
_d11

_d21Þ þ S5c11 _c
2
11 þ S6c11

_d
2

11 þ S7 _c11
_d11d11

þ S8c01c11 þ S9c11c21 þ S10d11d21 þ S11c3
11 þ S12c11d2

11,

H3 ¼ S13 _c01
_d11 þ S14ð_c11

_d21 � _c21
_d11Þ þ S15 _c

2
11d11 þ S16

_d
2

11d11 þ S17c11 _c11
_d11

þ S18c01d11 þ S19c11d21 þ S20c21d11 þ S21d3
11 þ S22c2

11d11,

H4 ¼ S23ð1 þ c11 €z0Þðc
2
11 þ d2

11Þ þ S24ð_c
2
11 þ

_d
2

11Þ,

H5 ¼ S25ð1 þ c11 €z0Þðc
2
11 � d2

11Þ þ S26ð_c
2
11 �

_d
2

11Þ,

H6 ¼ S27ð1 þ c11 €z0Þc11d11 þ S28 _c11
_d11, ðB:1Þ

where Si (i ¼ 1; 2; . . . ; 28) are all constants determined by the system parameters, and they are
given as follows:

S1 ¼ � Q50=c11; S2 ¼ Q51=c
2
11; S3 ¼ Q29=c11 þ ðQ11 þ Q28Þ=c01,

S4 ¼ Q30=c11 þ ðQ12 þ Q31Þ=c21,

S5 ¼ ðQ13 þ 2Q32 � Q4Q45 � Q7Q48Þ=c11 þ Q46ðQ11 þ Q28Þ=ðc11c01Þ

þ Q49ðQ12 þ Q31Þ=ðc11c21Þ � ðQ28Q45 þ Q31Q48Þ=c
2
11,

S6 ¼ ðQ14 þ Q33 � Q4Q45 þ Q7Q48Þ=c11 þ Q49ðQ12 þ Q31Þ=ðc11c21Þ

þ ð�Q28Q45 þ Q31Q48Þ=c
2
11,
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S7 ¼ ðQ15 þ Q33 þ 2Q34 � Q9Q48Þ=c11 þ Q46ðQ11 þ Q28Þ=ðc11c01Þ � Q31Q48=c
2
11,

S8 ¼ � Q4 � Q5 � ðQ28 þ Q29Þ=c11; S9 ¼ �Q6 � Q7 � ðQ30 þ Q31Þ=c11,

S10 ¼ � Q8 � Q9 � ðQ30 þ Q31Þ=c11,

S11 ¼ � 3Q10 þ Q4Q44 þ Q7Q47 þ ð�Q32 þ Q28Q44 þ Q31Q47Þ=c11,

S12 ¼ � 3Q10 þ Q4Q44 þ Q47ð�Q7 þ 2Q9Þ þ ð�Q33 � Q34 þ Q28Q44 þ Q31Q47Þ=c11,

S13 ¼ Q36=c11 þ ðQ23 þ Q35Þ=c01; S14 ¼ Q37=c11 þ ðQ24 � Q38Þ=c21,

S15 ¼ ðQ26 þ Q40 � Q16Q45 � Q19Q48Þ=c11 þ Q49ðQ24 � Q38Þ=ðc11c21Þ

� ðQ35Q45 þ Q38Q48Þ=c
2
11,

S16 ¼ ðQ27 þ 2Q41 � Q16Q45 þ Q19Q48Þ=c11 þ Q46ðQ23 þ Q35Þ=ðc11c01Þ

þ Q49ðQ24 � Q38Þ=ðc11c21Þ � ðQ35Q45 � Q38Q48Þ=c
2
11,

S17 ¼ ðQ25 þ 2Q39 þ Q40 � Q21Q48Þ=c11 þ Q46ðQ23 þ Q35Þ=ðc11c01Þ þ Q38Q48=c
2
11,

S18 ¼ � Q16 � Q17 � ðQ35 þ Q36Þ=c11; S19 ¼ �Q18 � Q21 � ðQ37 � Q38Þ=c11,

S20 ¼ � Q19 � Q20 þ ðQ37 � Q38Þ=c11,

S21 ¼ � 3Q22 þ Q16Q44 � Q19Q47 þ ð�Q41 þ Q35Q44 � Q38Q47Þ=c11,

S22 ¼ � 3Q22 þ Q16Q44 þ Q47ðQ19 þ 2Q21Þ � ðQ39 þ Q40 � Q35Q44 þ Q38Q47Þ=c11,

S23 ¼ � ðc01Q44 þ Q46Þ=c11; S24 ¼ ðc01Q45 þ c11Q46Þ=c
2
11,

S25 ¼ � ðc21Q47 þ Q49Þ=c11; S26 ¼ ðc21Q48 þ c11Q49Þ=c
2
11,

S27 ¼ � 2ðc21Q47 þ Q49Þ=c11,

S28 ¼ ðc21Q48 þ 2c11Q49Þ=c
2
11. ðB:2Þ
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Fig. A1. Natural frequencies for the liquid sloshing for the tank radius R ¼ 60mm.
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Appendix C. Natural frequencies for sloshing

The lower natural frequencies for the liquid sloshing for the tank radius R ¼ 60 mm is shown in
Fig. A1. They are plotted by solid lines. The broken line represents the values of 2p11: Each
natural frequency increases as the liquid level h increases. It is found from this figure that many
different natural frequencies are close together. In this case, the value of p41 is nearly equal to that
of p12: Depending on the parameter values, the relationships of some internal resonances hold
besides p0 ffi 2p11:
References

[1] R.A. Ibrahim, V.N. Pilipchuk, T. Ikeda, Recent advances in liquid sloshing dynamics, Applied Mechanics Reviews

54 (2) (2001) 133–199.

[2] R.E. Hutton, An investigation of resonant, nonlinear, nonplanar free surface oscillations of a fluid, NASA

Technical Note D-1870, 1963, pp. 1–64.

[3] H.N. Abramson, The dynamic behavior of liquids in moving containers, NASA SP-106, 1966.

[4] H.N. Abramson, W.H. Chu, D.D. Kana, Some studies of nonlinear lateral sloshing in rigid containers, Applied

Mechanics 33 (4) (1966) 777–784.

[5] J.W. Miles, Resonantly forced surface waves in a circular cylinder, Journal of Fluid Mechanics 149 (1984) 15–31.

[6] F.G. Dodge, D.D. Kana, H.N. Abramson, Liquid surface oscillations in longitudinal excited rigid cylindrical

containers, AIAA Journal 3 (4) (1965) 685–695.

[7] H. Takahara, K. Kimura, M. Sakata, Nonlinear axisymmetrical liquid oscillation in a circular cylinder tank

subjected to vertical excitation, Preprint of the Japan Society of Mechanical Engineers, No. 930-9 (III), 234–236,

1993 (in Japanese).

[8] K. Kimura, H. Takahara, M. Sakata, Effects of higher order radial modes upon nonlinear sloshing in a circular

cylindrical tank subjected to vertical excitation, Transactions of the JSME C 60 (578) (1994) 3259–3267

(in Japanese).

[9] K. Senda, N. Nakagawa, On the vibration of an elevated water-tank—I, Technical Reports of Osaka University 4

(117) (1954) 247–264.

[10] H. Hagiuda, Oscillation control system exploiting fluid force generated by water sloshing, Mitsui Zosen Technical

Review 137 (1988) 13–20 (in Japanese).

[11] Y. Fujino, B. Pacheco, C. Piyawat, K. Fujii, An experimental study on tuned liquid damper using circular

containers, Transactions of the Japan Society of Civil Engineers 34-A (1988) 603–616 (in Japanese).

[12] T. Ikeda, N. Nakagawa, Non-linear vibrations of a structure caused by water sloshing in a rectangular tank,

Journal of Sound and Vibration 201 (1) (1997) 23–41.

[13] T. Ikeda, T. Hirayama, N. Nakagawa, Nonlinear vibrations of a structure caused by water sloshing in a cylindrical

tank, Transactions of the JSME, International Journal, Series C 41 (3) (1998) 639–651.

[14] T. Ikeda, Nonlinear vibrations in an elastic structure subjected to vertical excitation and coupled with liquid

sloshing in a rectangular tank, in: Proceedings of the 1997 ASME Design Engineering Technical Conferences,

DETC97/VIB-4096, Sacramento, California, 1977.

[15] R.A. Ibrahim, A.D.S. Barr, Autoparametric resonance in a structure containing a liquid, part I: two mode

interaction, Journal of Sound and Vibration 42 (2) (1975) 159–179.

[16] R.A. Ibrahim, Multiple internal resonance in a structure–liquid system, Engineering for Industry 98 (3) (1976)

1092–1098.

[17] R.A. Ibrahim, J.S. Gau, A. Soundararajan, Parametric and autoparametric vibrations of an elevated water tower,

part I: non-linear parametric resonance, Journal of Sound and Vibration 121 (3) (1988) 413–428.



ARTICLE IN PRESS

T. Ikeda, S. Murakami / Journal of Sound and Vibration 285 (2005) 517–546546
[18] T. Ikeda, S. Murakami, Nonlinear vibrations in an elastic structure subjected to vertical excitation and coupled

with liquid sloshing in a cylindrical tank (resonance with an axisymmetric mode), in: Proceedings of the 1999

ASME Design Engineering Technical Conferences, DETC99/VIB-8048, Las Vegas, Nevada, 1999.

[19] J.J. Stoker, Nonlinear Vibrations, Wiley, New York, 1950.

[20] M. Sakata, K. Kimura, M. Utsumi, Non-stationary response of non-linear liquid motion in a cylindrical tank

subjected to random base excitation, Journal of Sound and Vibration 94 (3) (1984) 351–363.

[21] T. Ikeda, R.A. Ibrahim, Nonlinear random responses of a structure parametrically coupled with liquid sloshing in

a cylindrical tank, Journal of Sound and Vibration 284 (1–2) (2005) 75–102; doi:10.1016/j.jsv.2004.06.049.

[22] T. Ikeda, Nonlinear vibrations in a parametrically excited fluid–structure interaction system with one-to-one

internal resonance, in: Proceedings of the 2003 ASME International Mechanical Engineering Congress & Exposition,

IMECE2003-43996, Washington, DC, 2003.

[23] H. Hatwal, A.K. Mallik, A. Ghosh, Forced nonlinear oscillations of autoparametric system, part 2: chaotic

responses, Applied Mechanics 50 (3) (1983) 663–668.

[24] B. Banerjee, A.K. Bajaj, P. Davies, Resonant dynamics of an autoparametric system: a study using higher-order

averaging, International Journal of Non-Linear Mechanics 31 (1) (1996) 21–39.

[25] A.K. Bajaj, S.I. Chang, J.M. Johnson, Amplitude modulated dynamics of a resonantly excited autoparametric two

degree-of-freedom system, Nonlinear Dynamics 5 (4) (1994) 433–457.

[26] A.H. Nayfeh, On the undesirable roll characteristics of ships in regular seas, Journal of Ship Research 32 (2) (1988)

92–100.

[27] B. Balachandran, A.H. Nayfeh, Observations of modal interactions in resonantly forced beam-mass structures,

Nonlinear Dynamics 2 (2) (1991) 77–117.

[28] B. Balachandran, A.H. Nayfeh, Nonlinear motions of beam-mass structure, Nonlinear Dynamics 1 (1) (1990)

39–61.

[29] B. Balachandran, A.H. Nayfeh, Cyclic motions near a Hopf bifurcation of a four-dimensional system, Nonlinear

Dynamics 3 (1) (1992) 19–39.

[30] E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X. Wang, AUTO97: continuation

and bifurcation software for ordinary differential equations (with HomCont), 1977 Concordia University, Canada,

1977.

[31] A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series, Physica

16D (1895) 285–317.

[32] K.M. Case, W.C. Parkinson, Damping of surface waves in an incompressible liquid, Journal of Fluid Mechanics 2

(1957) 172–184.

dx.doi.org/10.1016/j.jsv.2004.06.049

	Autoparametric resonances in a structure/fluid interaction system carrying a cylindrical liquid tank
	Introduction
	Theoretical analysis
	Equations of motion
	Unstable regions in the corresponding linear system
	Modal equations
	Resonance curves near the tuning frequency

	Numerical results
	Influence due to the change of liquid level
	Influence due to the deviation of tuning

	Experimental apparatus
	Experimental results
	Conclusions
	Acknowledgements
	Nonlinear terms in Eqs. (22) and (23)
	Nonlinear terms in Eq. (24)
	Natural frequencies for sloshing
	References


